FEM.Elements.E1D package#
Collection of 1D Elements
Submodules#
FEM.Elements.E1D.CubicElement module#
Lineal element definition
- class FEM.Elements.E1D.CubicElement.CubicElement(coords: numpy.ndarray, gdl: numpy.ndarray, n: int = 4, **kargs)#
Bases:
FEM.Elements.E1D.Element1D.Element1D
Create a cubic element
- Parameters
coords (np.ndarray) – Element coordinates matrix
gdl (np.ndarray) – Element degree of freedom matrix
n (int, optional) – Number of gauss points. Defaults to 4.
- dpsis(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions derivatives of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function derivatives evaluated in Z points
- Return type
np.ndarray
- psis(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function evaluated in Z points
- Return type
np.ndarray
FEM.Elements.E1D.Element1D module#
1D Elements general class
- class FEM.Elements.E1D.Element1D.Element1D(coords: numpy.ndarray, gdl: numpy.ndarray, n: int, **kargs)#
Bases:
FEM.Elements.Element.Element
,FEM.Elements.E1D.LinearScheme.LinearScheme
Create a 1D Element
- Parameters
coords (np.ndarray) – Coordinates matrix
gdl (np.ndarray) – Degree of freedom matrix
n (int) – Number of Gauss Points used in integration
- draw() None #
Create a element graph over domain
- isInside(x: numpy.ndarray) numpy.ndarray #
Test if a given points is inside element domain
- Parameters
x (np.ndarray) – Point to be tested
- Returns
Bolean array of test result
- Return type
np.ndarray
- jacobianGraph() None #
Jacobian is constant in lineal elements
FEM.Elements.E1D.EulerBernoulliElement module#
Creates a 1D beam element
- class FEM.Elements.E1D.EulerBernoulliElement.EulerBernoulliElement(coords, gdl, n=2, nvn=2)#
Bases:
FEM.Elements.E1D.LinealElement.LinealElement
Creates a 1D beam element
- dhermit(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions derivatives of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function derivatives evaluated in Z points
- Return type
np.ndarray
- giveSolution(SVSolution: bool = False, domain: str = 'domain') numpy.ndarray #
Calculate the interpolated solution over element domain
- Parameters
SVSolution (bool, optional) – To calculate second variable solutions. Defaults to False.
- Returns
Arrays of coordinates, solutions and second variables solutions.
- Return type
np.ndarray
- giveSolutionPoint(Z: numpy.ndarray, SVSolution: bool = False) numpy.ndarray #
Calculate the interpolated solution over given set of points
- Parameters
Z (np.ndarray) – Natural coordintas to extract the solution
SVSolution (bool, optional) – To calculate second variable solution. Defaults to False.
- Returns
Arrays of coordinates, solutions and second variables solutions.
- Return type
np.ndarray
- hermit(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function evaluated in Z points
- Return type
np.ndarray
FEM.Elements.E1D.LinealElement module#
Lineal element definition
- class FEM.Elements.E1D.LinealElement.LinealElement(coords: numpy.ndarray, gdl: numpy.ndarray, n: int = 2, **kargs)#
Bases:
FEM.Elements.E1D.Element1D.Element1D
Create a lineal element
- Parameters
coords (np.ndarray) – Element coordinates matrix
gdl (np.ndarray) – Element degree of freedom matrix
n (int, optional) – Number of gauss points. Defaults to 3.
- dpsis(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions derivatives of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function derivatives evaluated in Z points
- Return type
np.ndarray
- psis(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function evaluated in Z points
- Return type
np.ndarray
FEM.Elements.E1D.LinearScheme module#
Defines a linear scheme for lineal elements
- class FEM.Elements.E1D.LinearScheme.LinearScheme(n: int, **kargs)#
Bases:
object
Creates a Linear Scheme
- Parameters
n (int) – Number of gauss points
FEM.Elements.E1D.QuadraticElement module#
Lineal element definition
- class FEM.Elements.E1D.QuadraticElement.QuadraticElement(coords: numpy.ndarray, gdl: numpy.ndarray, n: int = 4, **kargs)#
Bases:
FEM.Elements.E1D.Element1D.Element1D
Create a quadratic element
- Parameters
coords (np.ndarray) – Element coordinates matrix
gdl (np.ndarray) – Element degree of freedom matrix
n (int, optional) – Number of gauss points. Defaults to 3.
- dpsis(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions derivatives of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function derivatives evaluated in Z points
- Return type
np.ndarray
- psis(z: numpy.ndarray) numpy.ndarray #
Calculates the shape functions of the lineal element of a given natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix
- Returns
Shape function evaluated in Z points
- Return type
np.ndarray