FEM package#
FEM implementation for N dimensional and M variables per node.
Subpackages#
Submodules#
FEM.Core module#
Define the structure of a finite element problem. This is the parent class of individual equation classes.
The individual children classes must implement the method for calculating the element matrices and post processing.
- class FEM.Core.Core(geometry: FEM.Geometry.Geometry.Geometry, solver: Optional[Union[FEM.Solvers.Lineal.Lineal, FEM.Solvers.NoLineal.NonLinealSolver]] = None, sparse: bool = False, verbose: bool = False, name='')#
Bases:
object
Create the Finite Element problem.
- Parameters
geometry (Geometry) – Input geometry. The geometry must contain the elements, and the border conditions.
class. (You can create the geometry of the problem using the Geometry) –
solver (Union[Lineal, NonLinealSolver], optional) – Finite Element solver. If not provided, Lineal solver is used.
sparse (bool, optional) – To use sparse matrix formulation. Defaults to False
verbose (bool, optional) – To print console messages and progress bars. Defaults to False.
- borderConditions() None #
Assign border conditions to the system. The border conditios are assigned in this order:
Natural border conditions
Essential border conditions
This ensures that in a node with 2 border conditions the essential border conditions will be applied.
- description()#
Generates the problem description for loggin porpuses
- elementMatrices() None #
Calculate the element matrices
- ensembling() None #
Ensembling of equation system. This method use the element gdl and the element matrices. The element matrices degrees of fredom must match the dimension of the element gdl. For m>1 variables per node, the gdl will be flattened. This ensure that the element matrices will always be a 2-D Numpy Array.
- exportJSON(filename: Optional[str] = None)#
- postProcess() None #
Post process the solution
- profile() None #
Create a profile for a 3D or 2D problem.
- restartMatrix() None #
Sets all model matrices and vectors to 0 state
- solve(plot: bool = True, **kargs) None #
A series of Finite Element steps
- Parameters
plot (bool, optional) – To post process the solution. Defaults to True.
**kargs – Solver specific parameters.
- solveES(**kargs) None #
Solve the finite element problem
- solveFromArray(solution: numpy.ndarray, plot: bool = True, **kargs) None #
Load a solution array to the problem.
- Parameters
solution (np.ndarray) – Solution vertical array with shape (self.ngdl,1)
plot (bool, optional) – To post process the solution. Defaults to True.
- solveFromFile(file: str, plot: bool = True, **kargs) None #
Load a solution file and show the post process for a given geometry
- Parameters
file (str) – Path to the previously generated solution file.
plot (bool, optional) – To post process the solution. Defaults to True.
FEM.EDO1D module#
Solve a 1D 1 variable per node Finite Element problem
- class FEM.EDO1D.EDO1D(geometry: FEM.Geometry.Geometry.Geometry, a: Callable, c: Callable, f: Callable)#
Bases:
FEM.Core.Core
Create a 1D 1 variable per node Finite Element problem
The differential equation is:
\[a(x)\frac{d^2u}{dx^2}+c(x)u=f(x)\]- Parameters
geometry (Geometry) – 1D Geometry of the problem. Use the Mesh.Lineal class
a (function) – Function a, if a is constant you can use a = lambda x: [value]
c (function) – Function c, if c is constant you can use c = lambda x: [value]
f (function) – Function f, if f is constant you can use f = lambda x: [value]
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model. Element matrices and forces are calculated with Gauss-Legendre quadrature. Point number depends of element discretization.
- postProcess() None #
Generate graph of solution and solution derivative
FEM.Elasticity2D module#
2D Elasticity
- class FEM.Elasticity2D.PlaneStrain(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], rho: typing.Optional[typing.Tuple[float, list]] = None, fx: typing.Callable = <function PlaneStrain.<lambda>>, fy: typing.Callable = <function PlaneStrain.<lambda>>, **kargs)#
Bases:
FEM.Elasticity2D.PlaneStress
Create a Plain Strain problem
- Parameters
geometry (Geometry) – 2D 2 variables per node geometry
E (int or float or list) – Young Moduli. If number, all element will have the same young moduli. If list, each position will be the element young moduli, so len(E) == len(self.elements)
v (int or float or list) – Poisson ratio. If number, all element will have the same Poisson ratio. If list, each position will be the element Poisson ratio, so len(v) == len(self.elements)
rho (int or float or list, optional) – Density. If not given, mass matrix will not be calculated. Defaults to None.
fx (function, optional) – Function fx, if fx is constant you can use fx = lambda x: [value]. Defaults to lambda x:0.
fy (function, optional) – Function fy, if fy is constant you can use fy = lambda x: [value]. Defaults to lambda x:0.
- class FEM.Elasticity2D.PlaneStrainSparse(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], rho: typing.Optional[typing.Tuple[float, list]] = None, fx: typing.Callable = <function PlaneStrainSparse.<lambda>>, fy: typing.Callable = <function PlaneStrainSparse.<lambda>>, **kargs)#
Bases:
FEM.Elasticity2D.PlaneStressSparse
Create a Plain Strain problem using sparse matrix
- Parameters
geometry (Geometry) – 2D 2 variables per node geometry with fast elements
E (int or float or list) – Young Moduli. If number, all element will have the same young moduli. If list, each position will be the element young moduli, so len(E) == len(self.elements)
v (int or float or list) – Poisson ratio. If number, all element will have the same Poisson ratio. If list, each position will be the element Poisson ratio, so len(v) == len(self.elements)
rho (int or float or list, optional) – Density. If not given, mass matrix will not be calculated. Defaults to None.
fx (function, optional) – Function fx, if fx is constant you can use fx = lambda x: [value]. Defaults to lambda x:0.
fy (function, optional) – Function fy, if fy is constant you can use fy = lambda x: [value]. Defaults to lambda x:0.
- class FEM.Elasticity2D.PlaneStress(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], t: typing.Tuple[float, list], rho: typing.Optional[typing.Tuple[float, list]] = None, fx: typing.Callable = <function PlaneStress.<lambda>>, fy: typing.Callable = <function PlaneStress.<lambda>>, **kargs)#
Bases:
FEM.Elasticity2D.PlaneStressOrthotropic
Create a Plain Stress problem
- Parameters
geometry (Geometry) – 2D 2 variables per node geometry
E (int or float or list) – Young Moduli. If number, all element will have the same young moduli. If list, each position will be the element young moduli, so len(E) == len(self.elements)
v (int or float or list) – Poisson ratio. If number, all element will have the same Poisson ratio. If list, each position will be the element Poisson ratio, so len(v) == len(self.elements)
t (int or float or list) – Element thickness. If number, all element will have the same thickness. If list, each position will be the element thickness, so len(t) == len(self.elements)
rho (int or float or list, optional) – Density. If not given, mass matrix will not be calculated. Defaults to None.
fx (function, optional) – Function fx, if fx is constant you can use fx = lambda x: [value]. Defaults to lambda x:0.
fy (function, optional) – Function fy, if fy is constant you can use fy = lambda x: [value]. Defaults to lambda x:0.
- class FEM.Elasticity2D.PlaneStressNonLocalSparse(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], t: typing.Tuple[float, list], l: float, z1: float, Lr: float, af: typing.Callable, rho: typing.Optional[typing.Tuple[float, list]] = None, fx: typing.Callable = <function PlaneStressNonLocalSparse.<lambda>>, fy: typing.Callable = <function PlaneStressNonLocalSparse.<lambda>>, **kargs)#
Bases:
FEM.Elasticity2D.PlaneStressSparse
Create a Plain Stress nonlocal problem using sparse matrices and the Pisano 2006 formulation.
- Parameters
geometry (Geometry) – 2D 2 variables per node geometry
E (int or float or list) – Young Moduli. If number, all element will have the same young moduli. If list, each position will be the element young moduli, so len(E) == len(self.elements)
v (int or float or list) – Poisson ratio. If number, all element will have the same Poisson ratio. If list, each position will be the element Poisson ratio, so len(v) == len(self.elements)
t (int or float or list) – Element thickness. If number, all element will have the same thickness. If list, each position will be the element thickness, so len(t) == len(self.elements)
l (float) – Internal lenght
z1 (float) – z1 factor
Lr (float) – Influence distance Lr
af (Callable) – Atenuation function
rho (int or float or list, optional) – Density. If not given, mass matrix will not be calculated. Defaults to None.
fx (function, optional) – Function fx, if fx is constant you can use fx = lambda x: [value]. Defaults to lambda x:0.
fy (function, optional) – Function fy, if fy is constant you can use fy = lambda x: [value]. Defaults to lambda x:0.
- elementMatrices() None #
Calculate the elements matrices
- elementMatrix(ee: Element) None #
Calculates a single element local and nonlocal matrices
- Parameters
ee (Element) – Element to be calculated
- ensembling() None #
Creation of the system sparse matrix. Force vector is ensembled in integration method
- profile(p0: list, p1: list, n: float = 100) None #
Generate a profile between selected points
- Parameters
p0 (list) – start point of the profile [x0,y0]
p1 (list) – end point of the profile [xf,yf]
n (int, optional) – NUmber of samples for graph. Defaults to 100.
- class FEM.Elasticity2D.PlaneStressOrthotropic(geometry: FEM.Geometry.Geometry.Geometry, E1: typing.Tuple[float, list], E2: typing.Tuple[float, list], G12: typing.Tuple[float, list], v12: typing.Tuple[float, list], t: typing.Tuple[float, list], rho: typing.Optional[typing.Tuple[float, list]] = None, fx: typing.Callable = <function PlaneStressOrthotropic.<lambda>>, fy: typing.Callable = <function PlaneStressOrthotropic.<lambda>>, **kargs)#
Bases:
FEM.Core.Core
Creates a plane stress problem with orthotropic formulation
- Parameters
geometry (Geometry) – Input geometry
E1 (Tuple[float, list]) – Young moduli in direction 1 (x)
E2 (Tuple[float, list]) – Young moduli in direction 2 (y)
G12 (Tuple[float, list]) – Shear moduli
v12 (Tuple[float, list]) – Poisson moduli
t (Tuple[float, list]) – Thickness
rho (Tuple[float, list], optional) – Density. If not given, mass matrix will not be calculated. Defaults to None.
fx (Callable, optional) – Force in x direction. Defaults to lambdax:0.
fy (Callable, optional) – Force in y direction. Defaults to lambdax:0.
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model
- giveStressPoint(X: numpy.ndarray) Tuple[tuple, None] #
Calculates the stress in a given set of points.
- Parameters
X (np.ndarray) – Points to calculate the Stress. 2D Matrix. with 2 rows. First row is an array of 1 column with X coordinate. Second row is an array of 1 column with Y coordinate
- Returns
Tuple of stress (\(\sigma_x,\sigma_y,\sigma_{xy}\)) if X,Y exists in domain.
- Return type
tuple or None
- postProcess(mult: float = 1000, gs=None, levels=1000, **kargs) None #
Generate the stress surfaces and displacement fields for the geometry
- Parameters
mult (int, optional) – Factor for displacements. Defaults to 1000.
gs (list, optional) – List of 4 gridSpec matplotlib objects. Defaults to None.
- profile(p0: list, p1: list, n: float = 100) None #
Generate a profile between selected points
- Parameters
p0 (list) – start point of the profile [x0,y0]
p1 (list) – end point of the profile [xf,yf]
n (int, optional) – NUmber of samples for graph. Defaults to 100.
- class FEM.Elasticity2D.PlaneStressOrthotropicSparse(geometry: FEM.Geometry.Geometry.Geometry, E1: typing.Tuple[float, list], E2: typing.Tuple[float, list], G12: typing.Tuple[float, list], v12: typing.Tuple[float, list], t: typing.Tuple[float, list], rho: typing.Optional[typing.Tuple[float, list]] = None, fx: typing.Callable = <function PlaneStressOrthotropicSparse.<lambda>>, fy: typing.Callable = <function PlaneStressOrthotropicSparse.<lambda>>, **kargs)#
Bases:
FEM.Elasticity2D.PlaneStressOrthotropic
Creates a plane stress problem with orthotropic formulation and sparce matrices
- Parameters
geometry (Geometry) – Input geometry
E1 (Tuple[float, list]) – Young moduli in direction 1 (x)
E2 (Tuple[float, list]) – Young moduli in direction 2 (y)
G12 (Tuple[float, list]) – Shear moduli
v12 (Tuple[float, list]) – Poisson moduli
t (Tuple[float, list]) – Thickness
rho (Tuple[float, list], optional) – Density. If not given, mass matrix will not be calculated. Defaults to None.
fx (Callable, optional) – Force in x direction. Defaults to lambdax:0.
fy (Callable, optional) – Force in y direction. Defaults to lambdax:0.
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model
- ensembling() None #
Creation of the system sparse matrix. Force vector is ensembled in integration method
- class FEM.Elasticity2D.PlaneStressSparse(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], t: typing.Tuple[float, list], rho: typing.Optional[typing.Tuple[float, list]] = None, fx: typing.Callable = <function PlaneStressSparse.<lambda>>, fy: typing.Callable = <function PlaneStressSparse.<lambda>>, **kargs)#
Bases:
FEM.Elasticity2D.PlaneStressOrthotropicSparse
Create a Plain Stress problem using sparse matrices
- Parameters
geometry (Geometry) – 2D 2 variables per node geometry
E (int or float or list) – Young Moduli. If number, all element will have the same young moduli. If list, each position will be the element young moduli, so len(E) == len(self.elements)
v (int or float or list) – Poisson ratio. If number, all element will have the same Poisson ratio. If list, each position will be the element Poisson ratio, so len(v) == len(self.elements)
t (int or float or list) – Element thickness. If number, all element will have the same thickness. If list, each position will be the element thickness, so len(t) == len(self.elements)
rho (int or float or list, optional) – Density. If not given, mass matrix will not be calculated. Defaults to None.
fx (function, optional) – Function fx, if fx is constant you can use fx = lambda x: [value]. Defaults to lambda x:0.
fy (function, optional) – Function fy, if fy is constant you can use fy = lambda x: [value]. Defaults to lambda x:0.
FEM.Elasticity3D module#
3D Isotropic elasticity
- class FEM.Elasticity3D.Elasticity(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], rho: typing.Tuple[float, list], fx: typing.Callable = <function Elasticity.<lambda>>, fy: typing.Callable = <function Elasticity.<lambda>>, fz: typing.Callable = <function Elasticity.<lambda>>, **kargs)#
Bases:
FEM.Core.Core
Creates a 3D Elasticity problem
- Parameters
geometry (Geometry) – Input 3D geometry
E (Tuple[float, list]) – Young Moduli
v (Tuple[float, list]) – Poisson coeficient
rho (Tuple[float, list]) – Density.
fx (Callable, optional) – Force in x direction. Defaults to lambdax:0.
fy (Callable, optional) – Force in y direction. Defaults to lambdax:0.
fz (Callable, optional) – Force in z direction. Defaults to lambdax:0.
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model
- ensembling() None #
Creation of the system sparse matrix. Force vector is ensembled in integration method
- postProcess(**kargs) None #
Calculate stress and strain for each element gauss point and vertice. The results are stored in each element sigmas and epsilons properties.
- profile(region: list[float], n: float = 10) None #
Creates a profile in a given region coordinates
- Parameters
region (list[float]) – List of region coordinates (square region 2D)
n (float, optional) – Number of points. Defaults to 10.
- Returns
Coordinates, displacements and second variable solution
- Return type
np.ndarray
- class FEM.Elasticity3D.ElasticityFromTensor(geometry: FEM.Geometry.Geometry.Geometry, C: numpy.ndarray, rho: typing.Tuple[float, list], fx: typing.Callable = <function ElasticityFromTensor.<lambda>>, fy: typing.Callable = <function ElasticityFromTensor.<lambda>>, fz: typing.Callable = <function ElasticityFromTensor.<lambda>>, **kargs)#
Bases:
FEM.Elasticity3D.Elasticity
- class FEM.Elasticity3D.NonLocalElasticity(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], rho: typing.Tuple[float, list], l: float, z1: float, Lr: float, af: typing.Callable, fx: typing.Callable = <function NonLocalElasticity.<lambda>>, fy: typing.Callable = <function NonLocalElasticity.<lambda>>, fz: typing.Callable = <function NonLocalElasticity.<lambda>>, **kargs)#
Bases:
FEM.Elasticity3D.Elasticity
Creates a 3D Elasticity problem
- Parameters
geometry (Geometry) – Input 3D geometry
E (Tuple[float, list]) – Young Moduli
v (Tuple[float, list]) – Poisson coeficient
rho (Tuple[float, list]) – Density.
l (float) – Internal lenght
z1 (float) – Z1 factor
Lr (float) – Influence distance
af (Callable) – Atenuation function
fx (Callable, optional) – Force in x direction. Defaults to lambdax:0.
fy (Callable, optional) – Force in y direction. Defaults to lambdax:0.
fz (Callable, optional) – Force in z direction. Defaults to lambdax:0.
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model
- ensembling() None #
Creation of the system sparse matrix. Force vector is ensembled in integration method
- class FEM.Elasticity3D.NonLocalElasticityFromTensor(geometry: FEM.Geometry.Geometry.Geometry, C: numpy.ndarray, rho: typing.Tuple[float, list], l: float, z1: float, Lr: float, af: typing.Callable, fx: typing.Callable = <function NonLocalElasticityFromTensor.<lambda>>, fy: typing.Callable = <function NonLocalElasticityFromTensor.<lambda>>, fz: typing.Callable = <function NonLocalElasticityFromTensor.<lambda>>, **kargs)#
- class FEM.Elasticity3D.NonLocalElasticityLegacy(geometry: FEM.Geometry.Geometry.Geometry, E: typing.Tuple[float, list], v: typing.Tuple[float, list], rho: typing.Tuple[float, list], l: float, z1: float, Lr: float, af: typing.Callable, fx: typing.Callable = <function NonLocalElasticityLegacy.<lambda>>, fy: typing.Callable = <function NonLocalElasticityLegacy.<lambda>>, fz: typing.Callable = <function NonLocalElasticityLegacy.<lambda>>, **kargs)#
Bases:
FEM.Elasticity3D.Elasticity
Creates a 3D Elasticity problem
- Parameters
geometry (Geometry) – Input 3D geometry
E (Tuple[float, list]) – Young Moduli
v (Tuple[float, list]) – Poisson coeficient
rho (Tuple[float, list]) – Density.
l (float) – Internal lenght
z1 (float) – Z1 factor
Lr (float) – Influence distance
af (Callable) – Atenuation function
fx (Callable, optional) – Force in x direction. Defaults to lambdax:0.
fy (Callable, optional) – Force in y direction. Defaults to lambdax:0.
fz (Callable, optional) – Force in z direction. Defaults to lambdax:0.
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model
- ensembling() None #
Creation of the system sparse matrix. Force vector is ensembled in integration method
FEM.EulerBernoulliBeam module#
Euler Bernoulli Beam implementation
- class FEM.EulerBernoulliBeam.EulerBernoulliBeam(geometry: FEM.Geometry.Geometry.Geometry, EI: float, cf: float = 0.0, f: float = 0.0)#
Bases:
FEM.Core.Core
Creates a Euler Bernoulli beam problem
- Parameters
geometry (Geometry) – 1D 2 variables per node problem geometry. Geometry must have Euler Bernoulli elements.
EI (float) – Young’s moduli multiplied by second moment of area (inertia).
cf (float, optional) – Soil coeficient. Defaults to 0.
f (float or int or function, optional) – Force function applied to the beam. Defaults to 0.0
- elementMatrices() None #
Calculate the element matrices usign Guass Legendre quadrature.
- postProcess(plot=True) None #
Post process the solution. Shows graphs of displacement, rotation, shear and moment.
- class FEM.EulerBernoulliBeam.EulerBernoulliBeamNonLineal(geometry: FEM.Geometry.Geometry.Geometry, EI: float, EA: float, fx: float = 0.0, fy: float = 0.0)#
Bases:
FEM.Core.Core
Creates a Euler Bernoulli beam problem
- Parameters
geometry (Geometry) – 1D 2 variables per node problem geometry. Geometry must have Euler Bernoulli elements.
EI (float) – Young’s moduli multiplied by second moment of area (inertia).
EA (float) – Young’s moduli multiplied by area.
cf (float, optional) – Soil coeficient. Defaults to 0.
fx (float or int or function, optional) – Force function applied in the x direction to the beam. Defaults to 0.0
fy (float or int or function, optional) – Force function applied in the y direction to the beam. Defaults to 0.0
- elementMatrices() None #
Calculate the element matrices usign Guass Legendre quadrature.
- postProcess(plot=True) None #
Post process the solution. Shows graphs of displacement, rotation, shear and moment.
FEM.FEMLogger module#
- class FEM.FEMLogger.FEMLogger(ad: str = '')#
Bases:
object
Creation of a Logger for FEM purposes. Based on Python Logger by Fonic <https://github.com/fonic>
- end_timer()#
Ends the sesion time
- setup_logging(console_log_output='stdout', console_log_level='warning', console_log_color=True, logfile_file=None, logfile_log_level='debug', logfile_log_color=False, log_line_template='%(color_on)s[%(levelname)-8s] %(message)s%(color_off)s')#
Set the logger
- Parameters
console_log_output (str, optional) – . Defaults to “stdout”.
console_log_level (str, optional) – . Defaults to “warning”.
console_log_color (bool, optional) – . Defaults to True.
logfile_file (optional) – . Defaults to None.
logfile_log_level (str, optional) – . Defaults to “debug”.
logfile_log_color (bool, optional) – . Defaults to False.
log_line_template (str, optional) – . Defaults to “%(color_on)s[%(levelname)-8s] %(message)s%(color_off)s”.
- class FEM.FEMLogger.LogFormatter(color, *args, **kwargs)#
Bases:
logging.Formatter
Creates a Logging Formatter
- Parameters
color (color) – Color
- COLOR_CODES = {10: '\x1b[1;30m', 20: '\x1b[0;37m', 30: '\x1b[1;33m', 40: '\x1b[1;31m', 50: '\x1b[1;35m'}#
- RESET_CODE = '\x1b[0m'#
- format(record, *args, **kwargs)#
Formats arecord
- Parameters
record (record) – Record to be formatted
FEM.Heat1D module#
1D Stady state heat with convective border conditions
- class FEM.Heat1D.Heat1D(geometry: FEM.Geometry.Geometry.Geometry, A: float, P: float, ku: float, beta: float, Ta: float, q: float = 0.0)#
Bases:
FEM.Core.Core
Creates a 1D Stady state heat problem. Convective border conditions can be applied
The differential equation is:
\[-\frac{d}{dx}\left(Ak\frac{dT}{dx}\right)+\beta P(T-T_{\infty})=0\]- Parameters
geometry (Geometry) – Input 1D Geometry. 1 variable per node
A (float or list) – Section area. If float, all elements will have the same area. If list, the i-element will have the i-area
P (float or list) – Section perimeter. If float, all elements will have the same perimeter. If list, the i-element will have the i-perimeter
k (float or list) – Conductivity. If float, all elements will have the same conductivity. If list, the i-element will have the i-conductivity
beta (float or list) – Transfer coeficient. If float, all elements will have the same transfer coeficient. If list, the i-element will have the i-transfer coeficient
Ta (float) – Ambient temperature (also called T∞)
q (float or list, optional) – Internal heat generation rate. If float, all elements will have the same internal heat generation rate coeficient. If list, the i-element will have the i-internal heat generation rate. Defaults to 0.0.
- defineConvectiveBoderConditions(node: int, value: float = 0) None #
Add a convective border condition. The value is: \(kA\frac{dT}{dx}+\beta A(T-T_{\infty})=value\)
- Parameters
node (int) – Node where the above border condition is applied
value (float, optional) – Defined below. Defaults to 0.
- elementMatrices() None #
Calculate the element matrices using Gauss Legendre quadrature.
- postProcess() None #
Generate graph of solution and solution derivative
FEM.Heat2D module#
2D Stady state heat with convective border conditions
- class FEM.Heat2D.Heat2D(geometry: FEM.Geometry.Geometry.Geometry, kx: Tuple[float, list], ky: Tuple[float, list], f: Optional[Callable] = None)#
Bases:
FEM.Core.Core
Creates a Heat2D problem with convective borders
The differential equation is:
\[-\frac{\partial}{\partial x}\left(k_x\frac{\partial T}{\partial x}\right) - \frac{\partial}{\partial y}\left(k_y\frac{\partial T}{\partial y}\right)=f(x,y)\]With convective border conditions:
\[k_x\frac{\partial T}{\partial x}n_x+k_y\frac{\partial T}{\partial y}n_y+\beta (T-T_\infty)=\hat{q_n}\]- Parameters
geometry (Geometry) – Input 1 variable per node geometry
kx (Tuple[float, list]) – Heat transfer coeficient in x direction. If number, all element will have the same coefficient. If list, each position will be the element coefficient, so len(kx) == len(self.elements)
ky (Tuple[float, list]) – Heat transfer coeficient in y direction. If number, all element will have the same coefficient. If list, each position will be the element coefficient, so len(kx) == len(self.elements)
f (Callable, optional) – Internal heat generation function. Defaults to None.
- defineConvectiveBoderConditions(region: int, beta: float = 0, Ta: float = 0) None #
Define convective borders
- Parameters
region (int) – region in wich load will be applied
beta (float, optional) – Convective coeficient \(\beta\) . Defaults to 0.
Ta (float, optional) – Ambient temperature in convective border. Defaults to 0.
- elementMatrices() None #
Calculate the element matrices using Gauss Legendre quadrature.
- postProcess(levels=1000) None #
Generate the temperature surface for the geometry
FEM.NonLinealExample module#
Solve a 1D 1 variable per node non lineal Finite Element problem
- class FEM.NonLinealExample.NonLinealSimpleEquation(geometry: FEM.Geometry.Geometry.Geometry, a: Callable, f: Callable, **kargs)#
Bases:
FEM.Core.Core
Creates a nonlineal 1D equation with the form:
\[-\frac{d}{dx}\left(a(x)u\frac{du}{dx}\right)=f(x)\]- Parameters
geometry (Geometry) – Input lineal geometry
a (Callable) – Function a
f (Callable) – Function f
- elementMatrices() None #
Calculate the element matrices usign Reddy’s non lineal finite element model. Element matrices and forces are calculated with Gauss-Legendre quadrature. Point number depends of element discretization.
- postProcess() None #
Generate graph of solution and solution derivative
FEM.Poisson2D module#
Solve the Poisson equation for a 2D domain.
- class FEM.Poisson2D.Poisson2D(geometry: FEM.Geometry.Geometry.Geometry, phi: float)#
Bases:
FEM.Core.Core
Create a Poisson2D finite element problem
The differential equation is:
\[-\nabla^2\Psi=\theta\]- Parameters
geometry (Geometry) – 2D 1 variable per node geometry
phi (float) – Value
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model
- postProcess(levels=30, derivatives=True) None #
Create graphs for solution and derivatives.
FEM.Torsion2D module#
Solve the torsion Poisson equation for a 2D domain.
- class FEM.Torsion2D.Torsion2D(geometry: FEM.Geometry.Geometry.Geometry, G: float, phi: float, **kargs)#
Bases:
FEM.Core.Core
Create a torsional finite element problem
The differential equation is:
\[-\frac{-1}{G}\nabla^2\Psi=2\theta\]Where:
\[\begin{split}\sigma_{xz}\frac{\partial\Psi}{\partial y} \\ \sigma_{yz}=-\frac{\partial\Psi}{\partial x}\end{split}\]With \(\Psi=0\) on the boundary.
- Parameters
geometry (Geometry) – 2D 1 variable per node geometry
G (float) – Shear moduli of elements
phi (float) – Rotation angle in radians
- elementMatrices() None #
Calculate the element matrices usign Reddy’s (2005) finite element model
- postProcess(levels=30, derivatives=True) None #
Create graphs for stress function and derivatives.