FEM.Elements package#
Elements structures
Subpackages#
- FEM.Elements.E1D package
- FEM.Elements.E2D package
- FEM.Elements.E3D package
Submodules#
FEM.Elements.Element module#
Element class
- class FEM.Elements.Element.Element(coords: numpy.ndarray, _coords: numpy.ndarray, gdl: numpy.ndarray, border: bool = False, fast: bool = False)#
Bases:
object
Generates a generic element.
- Parameters
coords (np.ndarray) – Vertical coordinates matrix
_coords (np.ndarray) – Vertical coordinates matrix for graphical interfaces
gdl (np.ndarray) – Degree of freedom matrix. Each row is a variable.
border (bool) – True if the element is part of the border domain of another element.
- J(z: numpy.ndarray) numpy.ndarray #
Calculate the jacobian matrix over a set of natural coordinates
- Parameters
z (np.ndarray) – Natural coordinates matrix. Each row is a dimension, each column is a point.
- Returns
Jacobian’s matrices and shape function derivatives
- Return type
np.ndarray
- T(z: numpy.ndarray) numpy.ndarray #
Give the global coordinates of given natural coordiantes over element
- Parameters
z (np.ndarray) – Natural coordinates matrix. Each row is a dimension, each column is a point.
- Returns
Global coordinates matrix and shape functions
- Return type
np.ndarray
- TS(z)#
Returns the transformation of a given set of points in the element. This method is used for border elements
- Parameters
z (np.ndarray) – Natural coordinates matrix. Each row is a dimension, each column is a point.
- Returns
Global coordinates matrix
- Return type
np.ndarray
- giveSolution(SVSolution: bool = False, domain: str = 'domain') numpy.ndarray #
Calculate the interpolated solution over element domain
- Parameters
SVSolution (bool, optional) – To calculate second variable solutions. Defaults to False.
domain (str, optional) – Where to give the solution [‘domain’ or ‘gauss-points’]. Defaults to ‘domain’.
- Returns
Arrays of coordinates, solutions and second variables solutions.
- Return type
np.ndarray
- giveSolutionPoint(Z: numpy.ndarray, SVSolution: bool = False) numpy.ndarray #
Calculate the interpolated solution over given set of points
- Parameters
Z (np.ndarray) – Natural coordintas to extract the solution
SVSolution (bool, optional) – To calculate second variable solution. Defaults to False.
- Returns
Arrays of coordinates, solutions and second variables solutions.
- Return type
np.ndarray
- integrate(f: Callable) float #
Calculate the integral of f function over element domain
- Parameters
f (function) – Function to be integrated
- Returns
Integral value
- Return type
float
- inverseMapping(x0: numpy.ndarray, n: int = 100) numpy.ndarray #
Give the natural coordinates of given global coordinates over elements using Newton’s method
- Parameters
x0 (np.ndarray) – Global coordinates matrix
n (int, optional) – Máximun number of iterations. Defaults to 100.
- Returns
Natural coordinates matrix
- Return type
np.ndarray
- restartMatrix() None #
Sets all element matrices and vectors to 0 state
- setUe(U: numpy.ndarray) None #
Assing element local solution
- Parameters
U (np.ndarray) – Global solution